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It is known that, in a linear shear flow, fluid inertia causes a particle to spin
more slowly than the surrounding fluid. The present experiments performed with a
sphere with fixed centre, but free to rotate in a fluid undergoing solid-body rotation
around a horizontal axis indicate that the spin rate of the sphere can be larger
than that of the flow when the sphere is sufficiently far from the axis. Numerical
simulations at Reynolds number 5 � Re � 200 confirm this observation. To gain a
better understanding of the phenomenon, the rotating flow is decomposed into two
shear flows along orthogonal directions. It is found numerically that the cross-stream
shear has a much stronger effect on the particle spin rate than the streamwise shear.
The region of low stress at the back of the sphere is affected by the shear component
of the incident flow. While for the streamwise case the shift is minor, it is significant
for cross-stream shear. The results are interpreted on the basis of the effect of the
shear flow components on the quasi-toroidal vortex attached in the sphere’s near
wake. The contributions of streamwise and cross-stream shear to the particle spin can
be linearly superposed for Re = 20 and 50.

1. Introduction
The behaviour of particles or bubbles in a flow is one of the most fundamental

problems of fluid mechanics. While a considerable body of knowledge exists in the
limits of vanishing Reynolds numbers (see e.g. Lamb 1932; Happel & Brenner 1965;
Kim & Karrila 1991) or inviscid flow (see e.g. Lamb 1932; Milne-Thompson 1968;
Auton, Hunt & Prud’homme 1988), the investigation of finite-Reynolds-number effects
has been limited to simple situations such as steady uniform or shearing flows. Even
for these relatively simple configurations, however, our understanding is far from
complete.

The complexity of the general problem suggests that a profitable way to proceed
is to consider a variety of flows with well-defined characteristics in the hope of
building a broadly applicable synthesis. Rotational flows, which are studied in the
present paper, are particularly interesting in view of their widespread occurrence.
It appears impossible, for example, to achieve a satisfactory description of particle
dispersion in turbulence, or of the behaviour of fluidized beds, in the absence of a
good understanding of the drag and lift forces in such flows.

Here we study the behaviour of a sphere in a fluid undergoing solid-body rotation
(see figure 1a). The centre of the sphere is fixed while it is allowed to rotate in a
torque-free state. Experimentally, the situation is realized by placing a buoyant sphere
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Figure 1. Sphere in solid-body rotation: (a) geometry, gravity in the y-direction, (b) a
sphere (indicated by the arrow) in its equilibrium position in the small cylinder.

in a liquid-filled cylinder rotating around a horizontal axis (see figure 1b) and results
up to Reynolds numbers Re � 800 are shown, with

Re =
2RU0

ν
. (1.1)

In this equation R is the sphere radius, U0 the undisturbed flow velocity at the
sphere centre and ν the fluid viscosity. Numerically, we determine and explain the
dependence of the particle spin rate and lift force on the Reynolds number Re up to
200 and study the effects of the individual streamwise and cross-stream components
from which the motion of a fluid in solid-body rotation can be synthesized. We find
that streamwise and cross-stream shear have very different effects on the particle spin.
For solid-body rotation, the only other study we are aware of in which the particle
is allowed to freely rotate at sizeable Reynolds number is Bagchi & Balachandar
(2002b), whose results, however, are quite different from ours. In particular, their
conclusion that the particle spin rate is never greater than that of the ambient fluid
is at variance with our experiments and calculations and for the time being remains
unexplained.

Earlier work on rotating flows includes Herron, Davis & Bretherton (1975) and
Gotoh (1990) who calculated the hydrodynamic force acting on a sphere immersed
in a rotating flow at low Reynolds number. The lift force in a rotational inviscid
flow – in which, of course, the flow does not induce any rotation of the sphere –
has been investigated in Lighthill (1956), Auton (1987) and Auton et al. (1988) (see
also Drew & Lahey 1987). For the case of bubbles, Naciri (1992) and Sridhar &
Katz (1995) studied experimentally situations similar to the one considered here and
measured a lift coefficient considerably larger than that predicted by the available
theories. Similar results have more recently been reported in van Nierop et al. (2007).
As discussed in that paper, in the low Reynolds number limit, the hydrodynamic
force appears to be very sensitive to the flow type.

Several authors have studied the trajectory of particles in fluids in solid-body
rotation. Experimental results have been reported by, for example, Roberts, Kornfeld
& Fowlis (1991) and Mullin et al. (2005). Annamalai & Cole (1986), Raju & Meiburg
(1997), Gao, Ayyaswamy & Ducheyne (1997) and Coimbra & Kobayashi (2002) have
studied the problem theoretically, and an analysis of the stable equilibrium points at
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low Reynolds number has been given by Paradisi & Tampieri (2001), Coimbra &
Kobayashi (2002) and Kobayashi & Coimbra (2005). A brief study of the equivalent
problem for bubbles was presented by Lohse & Prosperetti (2003).

Our focus is on the particle spin and, therefore, quite different from that of all
these authors. Furthermore, most of the previously cited theoretical papers treated
the particles as points using parameterizations of the hydrodynamic force while we
actually calculate it from first principles by solving the Navier–Stokes equations.

Two other classes of flows involving particle spin or fluid rotation have been
studied. In one of them, the particle translates in the direction of the rotational axis
of the fluid (Childress 1964; Weisenborn 1985; Kim & Choi 2002; Wang, Lu &
Zhuang 2004; Candelier, Angilella, & Souhar 2004, 2005). In another group of papers
(Dennis, Singh & Ingham 1980; Rubinow & Keller 1961; Oesterlé & Dinh 1998;
Barkla & Auchterlonie 1971) the particle spins about an axis perpendicular to the
incident flow, as in the present work, but the particle angular velocity is prescribed
rather than resulting from the fluid dynamic interaction as here. Generally speaking,
all these papers find a strong effect of particle spin on the hydrodynamic force, and
especially on the lift. However these situations are evidently different from the one
considered in this paper.

Solid-body rotation can be decomposed into two shearing flows along orthogonal
directions. It is therefore of interest to consider such flows. The flow field in a
unidirectional simple shear is given by

U(y) = 2ωy êx, (1.2)

where U is the undisturbed fluid velocity, 2ω is the shear rate and êx is the unit vector.
If no external torque acts on the particle, its angular velocity Ωp will eventually adjust
so as to result in a vanishing hydrodynamic torque. Lin, Peery & Schowalter (1970)
studied this situation for very low values of the Taylor number defined by

T a =
2R2ω

ν
. (1.3)

This quantity may be considered as the ratio of the characteristic time for rotation to
that for viscous diffusion and is used later as a dimensionless measure of the liquid
angular velocity. The spin rate calculated by Lin et al. (1970) is

Ωp

ω
= 1 − 0.3076 T a3/2 + o

(
T a3/2

)
. (1.4)

Poe & Acrivos (1975) found experimentally that this expression is adequate provided
T a < 0.1. Mikulencak & Morris (2004) investigated the same situation numerically for
0 < T a < 100. For T a > 1 a steep decrease in the spin rate was seen with the Taylor
number. Thus, the particle angular velocity decreases as the fluid inertial effects,
as measured by the Taylor number, increase. Note that any difference between the
particle and fluid rotation rates must be due to fluid inertia which is of course an
immediate consequence of Faxèn’s second theorem which states that, at vanishing
Reynolds number, the angular velocity Ωp of a torque-free sphere is the same as the
local angular velocity of the ambient fluid (see e.g. Happel & Brenner 1965; Kim &
Karrila 1991).

The case in which the flow incident on the particle consists of the superposition of
a uniform plus a streamwise shearing flow

U(y) = (ωy − U0)êx, (1.5)
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where U0 represents the uniform flow component, has been studied by, among others,
Saffman (1965) and McLaughlin (1991) for small Reynolds numbers. Saffman (1965)
finds that the sphere angular velocity is not affected by the shear component to lowest
order. At higher Reynolds number the numerical results of Bagchi & Balachandar
(2002b) can be fitted by

Ωp

ω
=

1

2
(1 − 0.0364Re0.95) (1.6)

for 0.5 <Re � 5 and

Ωp

ω
=

1

2
(1 − 0.0755Re0.455) (1.7)

for 5 � Re � 200. Again, the particle spin rate is seen to decrease as fluid inertia
increases.

In addition to the already mentioned papers by Saffman (1965) and McLaughlin
(1991), several other authors have studied the forces on particles in linear shear flows.
Dandy & Dwyer (1990) calculated the force on a non-rotating particle while Bagchi
& Balachandar (2002b) allowed the particle to rotate freely as was seen in (1.6) and
(1.7). At low Reynolds number, as indicated by Mei (1992), the spin rate has little
effect on the lift force. This is not the case for Reynolds numbers in the intermediate
range as shown e.g. by Kurose & Komori (1999), who studied a particle with a
prescribed spin rate.

In this paper we study the steady-state spin rate of torque-free particles immersed
in a class of flows ranging from unidirectional shear to solid-body rotation. For the
latter case, we present both experimental and numerical results, while only numerical
means are used for the other cases. Unexpectedly, the spin rate of a spherical particle
trapped in a liquid rotating in solid-body motion is found to exceed the angular
velocity of the liquid in a large part of the parameter range. The only other reports
of spheres rotating faster than the fluid are in turbulent flows (e.g. Ye & Rocco 1992;
Mortensen et al. 2007). These data however were acquired in many-particle systems
and it was the mean spin that exceeded the mean angular fluid velocity. Mortensen
et al. (2007) ascribe this to preferential particle concentration. A somewhat surprising
new result in this work is that the effects of the cross-stream shear and the streamwise
shear on particle spin rate and shear stress at the particle surface can be linearly
superposed for the Reynolds number range studied.

2. Preliminaries
In suitable parameter ranges, a buoyant spherical particle or bubble finds an

equilibrium position when inserted in a fluid-filled horizontal cylinder rotating with
constant angular velocity ω as in figure 1(a) (see e.g. Naciri 1992; Paradisi & Tampieri
2001; Coimbra & Kobayashi 2002; Lohse & Prosperetti 2003; Bluemink et al. 2005;
van Nierop et al. 2007). At this position all forces – buoyancy, drag, added mass,
pressure gradient and lift – balance. While its centre remains fixed, the particle is of
course free to rotate.

In addition to the particle radius, R, and density, ρp , the equilibrium position of
the particle in a rotating liquid depends on ω, the angular velocity of the fluid, ν and
ρ, the kinematic viscosity and density of the liquid, and g, the acceleration due to
gravity. Two dimensionless quantities can be formed then, in addition to the Taylor
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number defined in (1.3). We take

Ga =
2R

√
2R(1 − ρp/ρ)g

ν
,

ρp

ρ
. (2.1)

The Galilei number Ga is a Reynolds number based on the characteristic velocity
induced by gravity; its use is particularly convenient as, for a given liquid and particle
radius, it is a constant.

More standard dimensionless parameters, such as the Reynolds number, can be
added to the above mentioned ones to characterize the flow environment seen by the
particle. Although a dependent variable, the distance re of the equilibrium position
from the axis of rotation is important for this purpose. With U0 = ωre the Reynolds
number defined earlier in (1.1) becomes

Re =
2RU0

ν
=

2Rreω

ν
. (2.2)

We also introduce a vorticity parameter

Srω =
2ωR

U0

=
2R

re

. (2.3)

Lohse & Prosperetti (2003) presented a simplified analysis of the problem using
standard large-Reynolds-number expressions for the added mass and lift forces on a
bubble (see (5.1)). After adjusting for the particle density and the no-slip boundary
conditions at the interface, that analysis is also applicable to a solid sphere and gives
the following result for re:

re

2R
=

2
√

2

3

⎡
⎣

√(
K

CD

)4

+

(
3

8CD

)2 (
Ga

T a

)4

−
(

K

CD

)2

⎤
⎦

1/2

, (2.4)

in which CD is the drag coefficient and K = 2CL − 1 − CA is composed of the added
mass coefficient CA, equal to 1/2 in potential flow, and of the lift coefficient CL, equal
to 1/2 in inviscid flow (Auton 1987). Clearly, as T a → ∞, we have re → 0, i.e. the
particle moves towards the axis of rotation. If we approximate CD by a constant,
which is a rough estimate appropriate in the upper range of the Reynolds numbers
encountered in the experiments described in the next section, for small values of T a

(2.4) gives

Re =
re

R
T a = 2

T a

Srω

� 2Ga√
3CD

[
1 − 4

3CD

(
KT a

Ga

)2
]
. (2.5)

This estimate shows that, asymptotically, Srω increases proportionally to T a (i.e. to
ω), while the Reynolds number reaches the limiting value 2Ga/

√
3CD , which is readily

seen to coincide with the terminal velocity of the particle in still fluid, as expected.
Before this limit is reached, however, Re increases as the Taylor number decreases.

3. Experiment
Experiments were conducted by placing a low-density polyethylene spherical particle

(density ρp = 920 kg m−3) in a transparent liquid-filled cylinder rotating around a
horizontal axis. Most of the data were taken in a 0.1 m diameter glass cylinder (see
figure 1b) but, in order to rule out wall effects, we also took some data in a larger,
0.5 m diameter Perspex cylinder; both cylinders were 0.5 m long. The larger cylinder
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Figure 2. Velocity profiles for different spin-up times.

had a motor with a controlled feed-back loop which permitted setting the angular
velocity with great accuracy.

Particles with radii R = 3.1 and 4.0 mm were used in the experiment. They were
marked with paint so as to facilitate the measurement of their angular velocity from
image sequences taken at a speed of 50 f.p.s. Several readings of the angular velocity
of the particles and of the small cylinder were taken from each image sequence; the
error bars shown in figures 3–5 represent the range of the data.

The liquids were water and a mixture of water and 75 % glycerine by weight;
the dynamic viscosity of the mixture was measured with a viscometer to be
μ =0.0347 kgm−1 s−1 and the density 1180 kgm−3.

To be certain that the flow field as seen by the particle is solid-body rotation,
sufficient time for spin-up must be allowed. In figure 2 the velocity profiles for different
spin-up times for a cylinder with radius a and height h, according to Wedemeyer
(1964), are shown. In the figure v0 indicates the velocity of the fluid and it is
normalized by the velocity at the cylinder wall. The time t allowed for spin-up is
written in non-dimensional form as kωt , where ω is the cylinder angular velocity and

k = 0.443 (2a)/h
√

ν/(a2ω). For kωt = 0.5 the fluid in the cylinder is far from solid-
body rotation, whereas for kωt = 3 it is quite close. The lines in the figure are valid
when the viscous terms are negligible, i.e. when ka2ω/ν � 1. The value of ka2ω/ν is
indeed much larger than 1, so the above estimate is valid. For a maximum error of
1% in velocity compared to the velocity field for solid body rotation, the spin-up
time ts for a fluid in a rotating cylinder starting from rest can be estimated to be of
the order of (see e.g. Wedemeyer 1964)

ts =
10.3954

ω

√
a2ω

ν

h

2a
. (3.1)

For the liquids used in this experiment, this relation gives estimates of a maximum
spin-up time of 4 min in water and 6 min in the glycerin–water mixture for both
cylinders. Data were taken well past these waiting periods. Furthermore, in several
cases, two sets of data were taken an hour or so apart, letting the cylinder rotate
in the intervening time; no differences (beyond the usual experimental fluctuations)
were found.
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Figure 3. Particle spin rate Ωp normalized by the liquid angular velocity ω versus T a =

2ωR2/ν for the experiments in water. The diamonds are data from the smaller cylinder,
triangles from the larger cylinder. The filled and open symbols are for particles of radius
4.0 mm and 3.1 mm, respectively. The particle Reynolds number corresponding to these data
is in the range of 200 to 1000.

For experiments performed in water, the Reynolds numbers were between 200 and
1000. Most of these experiments are well above the critical Reynolds number at which
the flow past a rising sphere loses axial symmetry (Jenny, Dusek & Bouchet 2004;
Natarajan & Acrivos 1993). Unlike the glycerin case, where the particle centre remains
stationary, in the water experiments we observed the particles precessing around their
equilibrium position, which is probably a manifestation of a related instability. The
spin rate reported was measured for this precessing particle.

The diamonds in figure 3 show the measured particle angular velocity Ωp

normalized by the cylinder angular velocity ω as a function of T a. The filled symbols
are data taken with the 4 mm radius sphere, while the open symbols refer to the
3.1 mm radius sphere. The difference between the two sets illustrates the effect of the
parameter Ga defined in (2.1). These data clearly indicate that there is a broad range
of T a values for which the particle rotates faster than the cylinder, i.e. faster than the
undisturbed flow. This is surprising, since, as we have seen in § 1, the known results
for streamwise shear would suggest that an increase of inertial effects brings about a
decrease in the particle spin rate compared to the ambient rotation. Moreover, to the
best of our knowledge, hitherto no such results have been reported.

As the cylinder rotation rate is decreased, the particle equilibrium position moves
away from the axis in such a way that Re increases as predicted by (2.4) and (2.5).
As shown in figure 3, the normalized particle angular velocity increases as well. To
examine the possibility of wall effects, we took data in the same Taylor-number
range in the larger cylinder. These data, shown by the triangles in figure 3, are quite
consistent with the other ones, which proves that the observed results are not wall
effects. The maximum value of Ωp/ω, about 2.1, is reached for a Reynolds number
that can be estimated as 650±100. It should be noted that this is smaller than the
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Figure 4. Normalized particle spin rate Ωp/ω versus T a = 2ωR2/ν for the glycerine–water
mixture in the smaller cylinder; the particle radius was 4.0 mm. The corresponding Reynolds
number is between 2 and 50, approximately.

Reynolds number for the terminal velocity in still fluid which would be 709 and
1090 for the 3.1 and 4.0 mm spheres, respectively. As the Taylor number is further
decreased, Ωp/ω rapidly falls and the precession of the particle is less regular. It is
speculated below in § 9 that these features may have some analogy with the onset
of unsteadiness in the case of a sphere rising in a quiescent fluid as the Reynolds
number is increased.

When the Taylor number is increased beyond 400 or so, the particle moves closer to
the centre, the Reynolds number decreases, and the vorticity parameter Srω increases.
Correspondingly, Ωp/ω falls below 1, reaches a minimum, and then starts rising again
toward 1, which is the expected normalized spin rate at very large angular velocities
when the particle centre is essentially on the rotation axis.

For the data in figure 3 Srω ranges between about 0.1 and 0.3 to the left of the
peak and between about 0.3 and 1 in the descending part of the curve. These values
are not very accurate due to the difficulty of getting an accurate reading of re, but
they do nevertheless demonstrate the trend of the data.

Figure 4 shows the results obtained in the smaller cylinder with the glycerine–water
mixture. The resulting Reynolds numbers were an order of magnitude smaller than
with water but the effect, although reduced, is still present: as T a decreases, the
particle moves away from the axis and its normalized spin rate increases above 1.
This finding suggests that the precessional motion of the sphere observed in water
does not qualitatively affect the phenomenon. The diamonds in figure 5 show the
same data plotted versus the Reynolds number. As before, a precise measurement
of the equilibrium position re is difficult and the error bars accordingly rather large;
nevertheless, the normalized particle spin rate is greater than 1 at sufficiently low
rotation rates. At higher rotation rates the particle moves closer to the axis, the
vorticity parameter Srω increases, and Ωp/ω falls below 1 as before. The fact that
this transition from values larger than 1 to values smaller than 1 is observed for
very different Reynolds numbers suggests it is mainly dependent on Srω reaching a
sufficiently large value, which is comparable in the two cases of water and water–
glycerine.
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Figure 5. The same data for the normalized particle spin rate of figure 4 (diamonds) are
plotted versus Re. The triangles are numerical results discussed in § 5.

In summary, these experiments conclusively prove that, in a portion of the parameter
range (Re, Srω), the normalized angular velocity of a particle increases beyond 1
with distance from the axis, i.e. as the flow velocity seen by the particle, and thus
Re, becomes sufficiently large. This trend prevails up to Re ∼ 650, after which the
normalized particle spin rate rapidly decreases. Thus, except when the particle is very
close to or very far from the cylinder axis, the particle angular velocity is higher than
that of the undisturbed flow.

4. Numerical method
To better understand the behaviour of the particle angular velocity in solid-body

rotation compared to simple shearing flow we carried out numerical simulations with
different types of flow, described in the next section. In this section we briefly explain
our numerical method.

We used the three-dimensional Navier–Stokes solver Physalis (Zhang & Prosperetti
2005). The underlying method rests on the observation that, owing to the no-slip
condition, the flow in the immediate neighbourhood of a particle differs at most
slightly from a rigid-body motion and can therefore be linearized about such a
motion. The resulting set of equations is formally similar to the Stokes equations, for
which a general solution (valid only very near the particle) can be written down in
terms of an expansion in spherical harmonics with undetermined coefficients (Happel
& Brenner 1965; Kim & Karrila 1991). These coefficients are calculated iteratively
by matching, in the immediate neighbourhood of the particle, the analytic solution
obtained in this fashion to a finite-difference solution. The advantage of this procedure
is that it avoids the need to deal with the complex geometry of the actual particle
boundary. The finite-difference solution is obtained on a standard Cartesian grid by
a second-order projection method. The solution obtained has therefore a dual nature,
spectral in a region with a thickness of the order of the mesh size surrounding the
particle, and finite-difference further away. Useful features of the technique are that
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Figure 6. Cross-section of the computational domain. The boundaries where Dirichlet
boundary conditions are applied are solid, the boundary where von Neumann boundary
conditions are applied is dotted.

fewer nodes per particle radius are sufficient for an accurate solution and that the
no-slip condition at the particle surface is satisfied exactly. Furthermore, the low-
order expansion coefficients are directly proportional to the hydrodynamic force and
couple acting on the particle. This property eliminates the need to calculate these
quantities by integration of the fluid stress over the particle surface. For details about
this method the reader is referred to Zhang & Prosperetti (2005) and for applications
to Zhang, Botto & Prosperetti (2006).

For reasons of computational time, most of the simulations were conducted for
Re = 20 and Re = 50, and a few additional ones were carried out for Re = 5, 35,
100 and 200. Decreasing the Reynolds number below 5 would require a very large
computational domain to avoid boundary effects, while higher Reynolds numbers
require a more refined grid. We found that in the Reynolds number range between
5 and 50 it was possible to perform simulations with sufficient domain size and
resolution in a reasonable amount of computing time.

The particle centre was placed at the centre of the computational domain which
was a cuboid (see figure 6 for a cross-section of the domain). Unless stated otherwise,
its dimensions were 20 particle radii in the x- and y-directions and at least 16 in the
z-direction, parallel to the axis of rotation. For Re = 20, we found that doubling the
domain size changed the particle spin rate by no more than 0.4 %, the drag coefficient
by about 1 % and the lift coefficient (defined below in (5.1)) by about 3%. For Re = 5
increasing the domain size from 18 to 22 particle radii in each direction changed
the drag coefficient by 1.4 %, while the (much smaller) lift coefficient underwent a
change of over 30 %. Thus, although the results for Re = 5 may have a somewhat
lower accuracy, we conclude that our domain size was sufficient for the other cases.

It has been shown in Zhang & Prosperetti (2005) that, for a sphere in uniform flow,
8 nodes per particle radius give an excellent accuracy at Re = 50 and an acceptable
one even at Re = 100. We have used the same number of nodes up to Re = 50. To
test the resolution, for Re = 50 we refined the grid by a factor of 2 in each direction
and found that the spin rate and the drag and lift coefficients changed by about 1 %
in the case of solid body rotation. For a linear shear flow the absolute differences
were comparable but, since in this type of flow the lift coefficient and spin rate are



Sphere in a uniformly rotating or shearing flow 211

much smaller, the relative differences were up to 8 % for the particle spin rates and
up to 13 % for the lift force, while they remained at the 1 % level for the drag
coefficient. Changing the resolution for the cross-stream shear and straining flow
yielded differences below the ones of the linear shear flow. For the simulations where
Re > 50, 16 nodes per particle radius were used.

The accuracy of the spectral representation of the solution in the region near the
particle depends on the order N of truncation of the spherical harmonic expansion,
i.e. on the number of coefficients retained in the calculation (Zhang & Prosperetti
2005). It was found that N = 1, which amounts to retaining only 10 coefficients,
yields inaccurate results. For Re = 50, truncation at N =2 (25 coefficients) or N =3
(49 coefficients) gave a difference of 2 % in the particle spin rate, 1 % in the lift
coefficient, and 0.2 % in the drag coefficient. Therefore, the calculations were done
with N = 2 and 25 coefficients.

The undisturbed flow velocity was prescribed on all the faces of the computational
domain parallel to the rotation axis except the bottom one (figure 6). On the bottom
surface the derivative of the horizontal velocity was set equal to the corresponding
derivative of the undisturbed velocity (i.e. −αω, see (6.1)), while the normal derivative
of the normal velocity was set to zero. Periodicity conditions were imposed on the
bounding planes normal to the rotation axis (z-direction). For the auxiliary pressure
variable, the standard von Neumann conditions of the second-order projection method
(see for example Brown, Cortez & Minion 2001; Zhang & Prosperetti 2005) were
used.

5. Numerical results for solid-body rotation, varying Re

A first set of simulations was conducted for a particle immersed in a liquid in
solid-body rotation with prescribed values of Re and Srω. In this case, as in the other
simulations described later, the particle centre was kept fixed but the particle was
allowed to freely rotate.

Although it would have been desirable to conduct a simulation releasing the particle
and allowing it to find its equilibrium position, the huge amount of computational
time required prevented us from doing this. Thus, the particle was placed to the left
of, and at different distances from, the rotation axis (figure 7a), depending on the
desired shear rate. In principle, for a given Reynolds number and shear rate, (2.4)
can be solved to give a specific value of Ga/T a, which suggests that the situations
we simulate are physically realizable.

The symbols in figure 8 show the drag on the sphere for different Reynolds numbers
for both rotating and non-rotating particles. The differences in the drag coefficient
are so small that they are not visible here. The solid line is the standard drag curve
for uniform flow, which predicts a slightly smaller drag. Numerical values are given
in table 1 together with those of other authors and our own for uniform flow.

The results for the normalized spin rate Ωp/ω vs. the Reynolds number are shown
in figures 5 and 9. Some numerical values are given in table 2. All our numerical
results indicate that the normalized spin rate Ωp/ω is above 1 in the case of a fluid
in solid-body rotation. Thus the particle spins faster than the surrounding fluid, just
as previously seen in experiments. As mentioned before, this behaviour is at variance
with that reported in the simulations of Bagchi & Balachandar (2002b) who, as
indicated in table 2, found a decrease in the normalized spin rate at these Reynolds
numbers. For comparison with another flow situation, table 2 also shows results for
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(c) (d)

Figure 7. Examples of the flow fields of the family of flows (6.1): (a) solid-body rotation,
α = 1, β =1; (b) linear shear, α = 0, β = 1; (c) strain, α = −1, β = 1; (d) cross-stream shear,
α = 1, β =0.
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Figure 8. Drag coefficient for a particle in solid-body rotation, Srω = 0.1, (symbols) compared
with the standard drag curve CD = (24/Re)(1+0.15Re0.687) for a uniform flow. The data points
for Re = 100 and Re = 200 were calculated with doubled spatial resolution, but a smaller
domain.

a linear shear flow. For this case the results of Bagchi & Balachandar (2002a) and
our own agree.

The triangles in figure 5 are the normalized spin rates for some of these simulations,
all with Srω = 0.1. In this figure the numerical results are compared with some of
the experimental results (diamonds). The influence of Srω can be deduced from
table 2. If Srω 	 1, there is little influence of Srω on Ωp/ω as becomes evident
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Drag coefficient Re = 5 Re = 20 Re = 50

Dennis & Walker (1971), uniform flow 7.21 2.73
Standard drag curve (Clift, Grace & Weber 1978) 6.98 2.61 1.54
Magnaudet, Rivero & Fabre (1995) 6.92 2.71
Bagchi (2002) 1.57
Present, uniform flow 7.42 2.77 1.59
Present, non-rotating particle in solid-body rotation, Srω = 0.1 2.79 1.62
Present, rotating particle in solid-body rotation, Srω = 0.1 7.83 2.80 1.63
Present, rotating particle in solid-body rotation, Srω = 0.04 1.59

Table 1. Drag coefficient, comparison of present simulations with previous results.
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Ωp
ω

Figure 9. Normalized torque-free particle spin rate for a particle in solid-body rotation,
Srω = 0.1, as a function of the Reynolds number. The data points for Re = 100 and Re = 200
were calculated with doubled spatial resolution, but a smaller domain. The solid line is a fit to
the data: Ωp/ω = 1 + 0.0045 Re.

Flow type Re Ωp/ω, BB Ωp/ω, present results

Linear shear 20 0.35 (Sr = 0.1) 0.36 (Sr = 0.05)
Linear shear 50 0.28 (Sr = 0.1) 0.30 (Sr = 0.05)
Solid-body rotation 20 1.08 (Srω = 1.10−4), 1.07 (Srω = 0.1)
Solid-body rotation 25 0.85 (Srω = 0.04) 1.10 (Srω = 0.04)
Solid-body rotation 50 0.74 (Srω = 0.04) 1.25 (Srω = 0.04), 1.24 (Srω = 0.1)

Table 2. Normalized torque-free particle spin rates, results of Bagchi & Balachandar (BB)
compared with the present results.

by comparing simulations at different Srω, but at the same Reynolds number. For
example, decreasing Srω by a factor of 1000 at Re =20 has hardly any effect on the
ratio Ωp/ω. This indicates that the ratio Ωp/ω is much more sensitive to Re than to
Srω for Srω 	 1. However, for high values of Srω the particle position is near the axis,
which has a strong effect on Ωp/ω owing to the resulting strong inhomogeneity of the
flow incident on the particle (see also the end of the section). The experimental data
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Figure 10. Computed velocity field in the symmetry plane for the flow around a sphere
immersed in a liquid in solid-body rotation (α = 1, β = 1, Srω = 0.1), Re = 20 (a), and a
higher-resolution close up (b). The length of the arrows, which are colour-coded, is proportional
to the velocity. The flow parameters α and β will be explained in § 6.
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Figure 11. As figure 10 but for Re = 50.

(diamonds) in figure 5 have in general a much higher shear rate than the numerical
simulations, in particular the left-hand data points.

The triangle corresponding to Re = 5 in figure 5 shows an angular velocity close
to the Stokes limit. The spin rate increases with Re, the behaviour being comparable
to that seen in the experimental data in the same figure. Figures 10 and 11 show the
velocity field in the symmetry plane in the neighbourhood of the particle for Re = 20
and 50, respectively. At the higher Reynolds number (figure 11) the wake extends to
a much greater distance behind the particle but is less deflected. Also, velocities in
the near-wake region are larger in the latter case.

Auton (1987) expressed the force FL on a stationary particle immersed in an
inviscid rotational flow with undisturbed velocity U at the position of the particle
centre in the form

FL = 4
3
πR3ρCLU × (∇ × U), (5.1)
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Flow type Re CL, BB CL, present results

Linear shear, R 20 0.18 (Sr = 0.1) 0.19 (Sr = 0.05)
Linear shear, NR 20 0.04 (Sr = 0.1) 0.05 (Sr = 0.05)
Linear shear, R 50 0.11 (Sr = 0.1) 0.13 (Sr = 0.05)
Solid-body rotation, R 20 0.66 (Srω = 10−4), 0.65 (Srω = 0.1)
Solid-body rotation, NR 20 0.45 (Srω = 0.1)
Solid-body rotation, R 25 4.29 (Srω = 0.04) 0.71 (Srω = 0.04)
Solid-body rotation, NR 25 4.14 (Srω = 0.04)
Solid-body rotation, R 50 3.05 (Srω = 0.04) 0.90 (Srω = 0.04), 0.86 (Srω = 0.1)
Solid-body rotation, NR 50 0.64 (Srω = 0.1)

Table 3. Comparison of the results for the lift coefficient (defined in (5.1)) of Bagchi &
Balachandar (BB) and the present results for rotating (R) and non-rotating (NR) spheres.

1.5

1.0
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0.5

0 50

Rotating particle

Non-rotating particle

100

Re

150 200

Figure 12. Dependence of the calculated lift coefficient defined in (5.1) on the Reynolds
number (Srω = 0.1). The data points for Re = 100 and Re = 200 were calculated with doubled
spatial resolution, but a smaller domain.

and calculated the value of the lift coefficient CL as 1/2. As expected, owing to
viscous effects and particle spin, our results, shown in table 3, differ from this value.
The table also shows significant differences between our computations and those of
Bagchi & Balachandar (2002b) for the present case of solid-body rotation, while the
two calculations agree for linear shear.

Not unexpectedly, particle spin is found to have a much greater effect on the
lift than on the drag coefficient. For example, for a non-rotating sphere at Re = 20,
CL = 0.45 and CD =2.79 while, when the particle is allowed to rotate, CD increases
only slightly to 2.80, while CL grows by over 40 % to 0.65. These and other numerical
values for Re =50 and Srω = 0.1 are given in table 3 and are shown for CL graphically
in figure 12 by the filled (rotating) and open (non-rotating) symbols. In both cases
the lift coefficient increases with the Reynolds number. The difference between the
rotating and non-rotating cases increases with Re as well. This is in line with the fact
that the particle rotates faster at higher Re. The lift coefficient must go to zero as
Re → 0 and, the computed result for Re = 5 does indeed indicate a strong decrease
in CL.

For Srω of order 1 the normalized particle spin rate drops below 1. For Srω = 2, for
which the axis of rotation touches the particle surface, a normalized particle spin rate
of 0.93 was found on a domain of 10 particle radii in each direction. This situation
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Figure 13. Velocity field in the symmetry plane for the flow around a sphere immersed in a
liquid in solid-body rotation for a large vorticity parameter case, Srω =2, Re = 20. The axis of
rotation is located at (x/R, y/R) = (1, 0) and therefore touches the surface of the sphere.
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Figure 14. The three base flows constituting the family of flows described in § 6 and
studied in § 7.

is comparable to that in experiments where the particle finds its equilibrium close to
the cylinder centre. Here a low particle spin rate was found too. Figure 13 shows the
flow around the particle for this high value of the vorticity parameter Srω. The flow
near the axis of rotation, located at (x/R, y/R) = (1,0), is strongly disturbed, with a
drastic effect on the incident flow.

6. A family of flows
A solid-body rotation can be considered as the result of adding two two-dimensional

shear flows in orthogonal directions (figure 14). As we have seen in § 2, when only a
streamwise shear is present, the spin rate of the particle is smaller than that of the
fluid, provided inertia is relevant. In contrast, at least in some parameter range, the
opposite is true when both shear components are present, as found in our experiments
and simulations of particles in rotating flows. To better understand the nature of these
differences in behaviour, we consider the following family of flows which smoothly
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interpolates between simple shear and solid-body rotation

U(x, y) = −αωy êx + (βωx − U0)êy. (6.1)

(For a study of the kinematics of these flows see Kobayashi & Coimbra (2005).) The
term −U0 (U0 > 0) represents a uniform flow, while α and β set the magnitude of the
cross-stream and streamwise shear components, respectively (figure 14). The vorticity
and the shear rate s of this flow field are given by

∇ × U = ω(β + α)êz, s =
∂Ux

∂y
+

∂Uy

∂x
= ω(β − α), (6.2)

respectively, and both are constants. The vorticity parameter Srω defined in (2.3) then
is

Srω =
ω(β + α)R

U0

. (6.3)

In a straining flow this is not a useful parameter since then β = −α and thus Srω =
0. Therefore in addition we introduce the ratio

Sr =
sR

U0

=
ω(β − α)R

U0

, (6.4)

which is a dimensionless measure of the shear rate. In the simulations described in
the next section the particle Reynolds number is kept fixed while the parameters α

and β are varied.
To investigate the effect of shear in the cross-stream direction, the streamwise shear

parameter β is set to 1 while the cross-stream shear parameter α is varied between –1
and 1. When α = 1, the liquid is in solid-body rotation as in figure 7(a). For α = 0
the sphere is in a streamwise shearing flow, with the shear in the same direction as the
uniform component, see figure 7(b). For α = −1 the flow is a combination of a pure
straining and a uniform downward flow, with the particle displaced horizontally from
the centre of strain, as in figure 7(c). Intermediate values of α interpolate between
these situations.

To see the influence of streamwise shear, when a cross-stream shear component is
also present, the parameter α is set to 1 and the parameter β is varied between –1 and
1. For β = 1 we have the same solid-body rotation as in figure 7(a). For β = 0 we
have a uniform flow with a cross-stream shear. The local incident flow field around
the particle is shown in figure 7(d). For β = –1 once again we find a combination
of a uniform component and a strain, except that now the strain is in the direction
opposite to that shown in figure 7(c).

7. Numerical results for fixed Re, varying α and β

At steady state, a particle immersed in the flows described in the previous section
will rotate with an angular velocity Ωp such that the hydrodynamic couple to which
it is subject vanishes. In the Stokes limit the angular velocity of the particle will be
the same as that of the fluid so that Ωp/ω = 1

2
(β + α).

In figure 15 the particle angular velocity, normalized by ω, is shown as a function
of the parameter α, with β fixed to 1, or β , with α fixed to 1. If α or β is set to 1,
while the other parameter is varied, in the Stokes limit the result is independent of
which parameter is held fixed and which one is varied, as indicated by the dotted
line in the figure: the angular velocity of the particle increases linearly with both α

and β , and therefore also with the vorticity. When inertial effects are accounted for,
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Figure 15. Particle angular velocity normalized by ω vs. α, for β = 1 (squares), and β , for
α = 1 (diamonds) for Re = 20; the dotted line is the Stokes result. The solid and dashed lines
show the result obtained by linearly superposing the values of Ωp/ω induced separately by
each shear flow type.

however, it is relevant which of the two shear components is varied. For the results
shown in figure 15 the Reynolds number is 20. When the streamwise shear is fixed
(β =1, squares), the spin rate is below the Stokes value over most of the range except
when the cross-stream component is close to 1. When the cross-stream component
is fixed, however (α = 1, diamonds), the spin rate is always above the Stokes value.
These results clearly show that the angular velocity of the particle more strongly
depends on the cross-stream than on the streamwise shear.

The case α = 0, β = 1 (middle square in figure 15) represents a linear shear flow, the
shear component being in the flow direction. We find Ωp/ω = 0.36, the decrease with
respect to the Stokes limit (Ωp/ω = 0.5) being due to inertial effects. The flow field
in the symmetry plane can be seen in figure 24(b). For the same Reynolds number,
the fit (1.7) to Bagchi & Balachandar’s (2002a) results predicts a normalized particle
angular velocity of Ωp/ω = 0.35, very close to our value (see table 2).

In the pure strain cases (α = 1, β = − 1 or α = − 1, β =1) the particle is found
to rotate with Ωp/ω = 0.36 and –0.36, respectively, in spite of the fact that the
undisturbed flow itself has no vorticity. Bagchi & Balachandar (2003) considered the
case of a particle moving through a straining field and also found the particle to rotate
as long as neither of the principal axes of the strain was aligned with the relative
velocity. This case is quite similar to our situation of a particle fixed in a straining flow
to which a uniform flow is added, and indeed in our case no principal axis of the strain
is aligned with the uniform flow component. The streamwise shear induces a clockwise
rotation, whereas the cross-stream shear induces a counterclockwise rotation when
α = 1, β = –1. The contribution of the streamwise shear component appears to be
less effective, so that the resultant spin is in the direction of the cross-stream shear.
The cross-section of the flow field around the particle shown in figure 24(e) indicates
a deflection of the wake to the right due to the cross-stream shear. For a cross-stream
shear with α =1, β = 0 (middle diamond in figure 15), we find Ωp/ω = 0.72, which is
an increase with respect to the Stokes limit (Ωp/ω = 0.5).

To better understand these different phenomena, the effects of the two shear types
were investigated separately by setting one of the parameters to 0 and varying the
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Figure 16. Particle angular velocity normalized by ω vs. α, for β =0 (squares) and β , for
α = 0 (diamonds) for Re =20; the dotted line is the Stokes result. The solid and dashed lines
represent linear fits.

Flow type α β ΩP /ω α β ΩP /ω α β ΩP /ω

Re → 0 Re = 20 Re = 50

Linear shear 0 1 0.5 0 1 0.36 0 1 0.30
Cross-stream 1 0 0.5 1 0 0.72 1 0 0.91
Solid-body rotation 1 1 1 1 1 1.07 1 1 1.20
Strain 1 −1 0 1 −1 0.36 −1 1 −0.61

Table 4. Results for the normalized particle angular velocity for different types of flow at
Re = 20 and Re = 50 compared with the results for Stokes flow.

other one. The results are shown in figure 16; as before, the dotted line is the Stokes
limit. Once again, the cross-stream shear gives rise to a much higher spin rate (in
modulus) than the streamwise shear. The results of the cross-stream shear lie above
the Stokes limit, those of the streamwise shear below. So, whereas inertial effects
decrease the particle spin rate due to streamwise shear, they increase it in the presence
of a cross-stream shear.

In figure 15, the solid line closely matching the squares shows the relation
Ωp/ω = 0.36+0.72 α and is the sum of 0.36, the normalized angular velocity calculated
for α = 0 and β = 1 (streamwise shear flow), and a linear fit to the value of Ωp/ω

calculated for β = 0 and variable α (i.e. variable cross-stream shear, see figure 16).
Similarly, the dashed line represents the relation Ωp/ω =0.72 + 0.36 β , which is the
sum of the angular velocity calculated for α = 1 and β = 0 (cross-stream shear flow),
0.72, and a linear fit to the value of Ωp/ω calculated for α =0 and variable β . In
table 4 the torque-free particle spin rates for different flow types at different Reynolds
numbers are given. Apparently, one can add, resp. subtract, the particle spin rates
in a cross-stream shear and a streamwise shear to find the spin rates in a solid-
body rotation, resp. straining flow. It is remarkable that a linear combination very
accurately reproduces the computational results in spite of the nonlinearity of the
governing equations. Probably this is a consequence of the relative smallness of the
shear flows with respect to the incident uniform flow in the cases studied (Sr and
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Figure 17. (a) Coordinate system for the sphere with incoming flow, (b) top view of the
sphere with the angles φ1 and φ2 marking the region of low shear stress, |σrφ/(μU0/a)| < 0.05.

Srω are of the order 0.1). This finding may be useful as it permits the deduction of
properties of the combined flow from those of its individual components.

8. Shear stress
The results of the previous section show a clear distinction between the effects

of the streamwise shear flow and the other types of flow on particle spin. The
streamwise shear flow causes a decrease in particle spin rate with increasing Reynolds
number, whereas all others show an increase (table 4). The increase is smallest for
a solid-body rotation, larger for the cross-stream shear and largest for straining
flow.

With the coordinates as given in figure 17, the component of the hydrodynamic
couple around the rotation axis is

T = a3

∫
σrφ (sin θ)2 dθ dφ (8.1)

in which a sin θ is the distance of the surface element a2 sin θ dθ dφ from the axis
and σrφ the appropriate component of the viscous stress. The flow around particles
prevented from rotating results in a non-zero value for this integral, while it will vanish
for particles rotating in a torque-free state. It is therefore interesting to contrast the
detailed distribution of σrφ on the particle surface in these two situations and for
the different flows. (A useful feature of the Physalis method is that the values of the
shear stress are proportional to the coefficients of the spherical harmonic expansion
mentioned in § 5.)

A steady two-dimensional boundary layer separates from a fixed wall at a point
of zero shear stress. In our case the boundary layer is three-dimensional and, with
a freely rotating particle, on a moving boundary. Thus the situation is much more
complex (Délery 2001; Surana, Grunberg & Haller 2006; Williams III 1977; Van
Dommelen & Cowley 1990; Degani, Walker & Smith 1998; Dandy & Dwyer 1990).
Still, the separated flow behind the sphere will correspond to a region of low σrφ .
With reference to figure 17(b), we define angles φ1 and φ2 as limiting angles of
the low-shear-stress region where |σrφ/(μU0/a)| < 0.05 on the sphere equator. The
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coordinate system is shown in figure 17(a); the incident flow is in the negative
y-direction.

Figure 18(a–c) displays σrφ on the sphere for a uniform flow with Re = 50.
Figure 18(b) is a top view of the sphere; figure 18(a) shows contours of σrφ in a (φ θ)-
plot. Another way to present this information is a Hammer–Aitoff projection (e.g.
Bugayevskiy & Snyder 1995), which has the advantage of preserving areas.
Figure 18(c) shows this Hammer–Aitoff projection for the uniform flow at Re = 50;
the contours in panels (a), (c), and (d) are in steps of 0.05. The incoming flow arrives
at the sphere along the line φ = π/2 where σrφ = 0. Behind the sphere (φ between π and
2π), the flow separates, and here we see a large region of low shear stress, the green
area.

Figure 18(d) shows σrφ for Re = 20. The region of low shear stress (green area) is
smaller, indicating that the flow separates later than for Re = 50. Furthermore the
values of σrφ are larger.

We now consider the situation where a solid-body rotation (in the positive z-
direction, α = β =1 in (6.1)) is added to the uniform flow. Figures 19(e) and 19(f ),
respectively for a non-spinning and a spinning sphere, permit a comparison of the
stress distribution in the two cases. It can be seen that the region of low shear stress
(the white region) is shifted somewhat clockwise for the spinning particle (figure 19f )
compared to the non-spinning one (figure 19e). Both φ1 and φ2 decrease (compare
the location of the contours near the dotted 5π/4 and 7π/4 lines), suggesting that
the flow remains attached longer on the side of positive x (as defined in figure 17)
and detaches at an earlier stage for negative x. Close examination of figures 19(e)
and 19(f ) shows that the front stagnation point moves a little counterclockwise for a
spinning sphere.

In figures 18(e) and 18(f ) the uniform-flow distribution is subtracted from the
solid-body rotation at Re = 20. The less positive values of σrφ − σrφ, uniform close to
the dotted 5π/4 and 7π/4 lines suggest that the flow separates at lower φ-values for
the spinning particle. Furthermore the front stagnation point shifts counterclockwise
as before owing to the particle spin.

The plots at the left of figure 19 display the (rφ)-component of the shear stress
for a non-rotating particle in the four cases of streamwise shear, cross-stream shear,
solid body rotation and strain. The region of low shear stress is the white region. The
angle φ1 shifts to higher values in the sequence streamwise shear, solid-body rotation,
cross-stream shear, strain. Note that this is the same order as found for the Reynolds
number dependence of the particle spin. There is also a small shift in φ2. A larger
value of φ1 indicates that the shear stress remains high along a larger fraction of the
sphere surface on the positive shear stress side, which helps the particle spin. A larger
φ2, on the other hand, suggests an earlier separation on the side of the negative shear
stress. This means that a shift of φ1 and φ2 in the direction of rotation favours the
particle spin. When the particle is rotating as shown in the right panels of figure 19,
the differences between the flow types become less clear, since the particle spin causes
the region of low shear stress to move back. For example, the particle in a solid-body
rotation spins faster than in a streamwise shear. As a result, the region of low shear
shifts clockwise and ends up at almost the same location as for the streamwise shear.

In figure 20 the uniform flow result is subtracted from the other flow types
for Re = 20. In the a-plots we can see that the shear stress distribution remains
quite symmetric for a streamwise shear, as is also clear from the top view in
figure 18(g).
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Figure 18. σrφ . (a) Uniform flow, Re = 50, (φ θ )-plot, (b) top view or xy-projection,
(c) Hammer–Aitoff projection. (d) Uniform flow, Re = 20, Hammer–Aitoff projection.
(e) Difference between solid-body rotation and uniform flow, Re = 20, non-rotating, (f ) as
(e) but, rotating. (g) Top view of difference between streamwise shear and uniform flow,
Re = 20, rotating. (h) Top view of difference between cross-stream shear and uniform flow,
Re = 20, rotating. For the definition of φ and θ , see figure 17.
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Figure 19. |σrφ |, Re = 20. (a) Streamwise shear (Sr = 0.05, Srω =0.05), non-rotating,
(b) rotating. (c) Cross-stream shear (Sr = 0.05, Srω =0.05), non-rotating, (d) rotating.
(e) solid-body rotation (Sr =0, Srω = 0.1), non-rotating, (f ) rotating. (g) Strain (Sr = 0.1,
Srω = 0), non-rotating, (h) rotating. For the definition of φ and θ , see figure 17.

If we add (σrφ, sws − σrφ, uniform for a streamwise shear, figure 20a) and (σrφ, css −
σrφ, uniform for the cross-stream shear, figure 20b), we obtain the result indicated in
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Figure 20. Differences in σrφ with uniform flow, Re = 20, rotating particle: (a) streamwise
shear shear, (b) cross-stream shear, (c) solid-body rotation, (d) strain. For the definition of φ
and θ , see figure 17.
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Figure 21. Differences in σrφ of a streamwise and a cross-stream shear: (a) added,
(b) subtracted. Re = 20. For the definition of φ and θ , see figure 17.

figure 21(a), with a striking resemblance with figure 20(c). Upon subtracting the two
quantities (figure 21b) we find a result very close to that of figure 20d for the straining
flow. Thus, we can simply add, or subtract, the excess σrφ with respect to uniform flow
for streamwise and cross-stream shear to find approximately the result for solid body
rotating or straining flow. For Re = 50 this approximation is still good (figures 22
and 23). We found earlier in § 7 the same additive property for the particle spin
rates.
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Figure 22. Differences in σrφ with uniform flow, Re =50, rotating particle: (a) stream-wise
shear shear, (b) cross-stream shear, (c) solid-body rotation, (d) strain. For the definition of φ
and θ , see figure 17.
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Figure 23. Differences in σrφ of a streamwise and a cross-stream shear: (a) added,
(b) subtracted. Re = 50. For the definition of φ and θ , see figure 17.

9. Physical considerations
In § 7 we have seen that a linear addition for the spin rates is possible for Re =20

and Re = 50. The results in § 8 show that the same holds for the change in the (rφ)-
component of the shear stress due to a disturbance of the uniform flow. Furthermore,
when adding a shear component to the uniform flow, a shift of the low-shear region
was seen. What causes the displacement?
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For a fixed, non-rotating particle the previous expression (8.1) for the torque may
be written as

T = −μa3

∫
ωθ sin2 θ dθ dφ. (9.1)

When a sphere is held fixed in a steady uniform flow, an axisymmetric stationary
toroidal vortex forms behind it up to a Reynolds number of about 210 (Taneda 1978;
Natarajan & Acrivos 1993; Johnson & Patel 1999). In a uniform flow the torque is
zero because of the symmetry in ωθ . Consider now a perturbation of the incident
uniform flow in the form of a strain field such as the one shown in figure 7(c). This
flow, by itself, has no vorticity. Since, as we have seen, the particle rotates in this
situation, a non-zero hydrodynamic couple must exist if the particle is prevented from
rotating. Since the perturbation carries no vorticity, the hydrodynamic couple must
be due to the distortion of the unperturbed vorticity. The strain alters the symmetry
of the ωθ distribution on the particle surface.

It is instructive to consider in this light the different flow situations studied in
the previous sections. The left-hand column in figure 24 shows a sketch of the flow
type and the right-hand column is the velocity field in the symmetry plane of the
sphere perpendicular to the axis of rotation. The sketches in the central column give
a qualitative illustration of how the toroidal vortex behind a sphere in steady uniform
flow (shown at the top) may be expected to be modified by the addition of various
disturbances to the base uniform flow.

The central sketch in figure 24(b) shows the modification of the toroidal vortex due
to a streamwise shear flow component. The vortex is tilted by the flow. The effect
of this on the shift of the wake is not clearly visible in the figure. The effect of a
cross-stream shear is much larger. As sketched in figure 24(c–e), a cross-stream shear
flow tends to displace the toroidal vortex sideways instead of merely tilting it (which
is the result of a streamwise shear). The pictures in the right-hand column show that,
accordingly, the wake is bent much more strongly. When the cross-stream shear is
combined with the streamwise shear to result in a solid-body rotation (figure 24d), the
two effects sketched separately in figures 24(b) and 24(c) act together and result in the
spin rate for a particle in solid body rotation. Since, with increasing Re, the strength
of the toroidal vortex increases, it is reasonable to conclude that the magnitude of
the spin will also increase, as indeed found up to a maximum Reynolds number in
the data shown in figure 3. In the pure straining flow case of figure 24(e), the stream-
wise shear opposes the particle spin induced by the cross-stream shear, but the
sideways displacement of the vortex ring is more powerful and the particle still spins,
though with a lower angular velocity.

The results of figures 15 and 16 show that shear flow in the cross-stream direction
increases the particle spin much more than streamwise shear flow. Harper & Chang
(1968) investigated a particle moving through a shear field in an arbitrary direction.
In their case as well one can see from their lift coefficient that the cross-stream shear
has a stronger effect than a streamwise one. This seems to be a general feature of the
type of flows investigated in the present parameter range.

Apart from displacing the wake, the shift of the vortices will change the location
of the region of low shear, so instead of looking at the wake displacement, we
may also look at the angles φ1 and φ2 discussed in § 8 to obtain an idea of
this shift. Here one should remember that there are two competing effects for a
rotating sphere: the shear components shift the angles φ1 and φ2 counterclockwise
(compare figure 19a, c, e, g with 18d), while the particle spin shifts them in clockwise
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direction (compare figures 19a, c, e, g with b, d, f, h). From studying the non-rotating
cases, we know that the shears increase the angles φ1 and φ2 (though the increase
in the latter is minor compared to the increase in the former). This implies a
shift of the left stagnation point downward and the right stagnation point slightly
upwards in figure 24. For the rotating cases the angles are shifted back a little,
but in general φ1 is increased. This suggests that the flow remains attached along a
larger region on the left-hand side of the sphere than on the right-hand side of the
sphere.

So by what mechanism is the particle spin rate decreased for a linear shear and
increased for the other flow types? Consider a particle in a uniform flow with its
distribution of surface shear, figure 18(d). The torque on the particle is zero. Addition
of a linear shear, always keeping the particle from rotating, causes a change in this
distribution of surface stress, figure 19(a), but the shift of the low-shear-stress region
is not large. There is now a torque on the particle which must be externally opposed
in order to prevent particle spin. If we take this torque away, only a relatively small
spinning rate is sufficient to relax the torque on the particle to zero. When cross-
stream shear, strain or solid-body rotation are added to the uniform velocity, there
is a much larger displacement of the low-shear-stress regions, see the large shift in
φ1 in figure 19(c, e, g). The reason for this larger shift in φ1 lies in the sideways
displacement of the toroidal vortex, due to the cross-stream shear component. A
larger spinning rate of the sphere is now needed to relax the torque on the particle to
zero.

As the Reynolds number rises, the strength of the vortices will increase. However,
owing to stronger convective effects the wake is less deflected. The two competing
effects on the wake (increased vortex strength and diminished wake deflection) are
reflected in the shear stress values. As the Reynolds number increases, the absolute
value of the shear stress decreases (compare figures 18c and 18d). The differences
with uniform flow remain, however, comparable for Re = 20 and Re = 50 (figures 20
and 22). Relatively, the difference with uniform flow is larger for higher Reynolds
number. So even though the shear stress decreases for higher Reynolds number, the
effective difference with uniform flow increases and the flow effects on the spin rate
will increase with the Reynolds number.

What happens in the highest Reynolds number range investigated in the present
experiments with water? Uniform flow past a sphere has been studied extensively
and exhibits a complex behaviour. The linear stability analysis of Natarajan &
Acrivos (1993) reveals a first regular bifurcation to a steady non-axisymmetric
flow at Re � 210, followed by a Hopf bifurcation at Re � 270. These results have
been confirmed by Ghidersa & Dusek (2000) and Thompson, Leweke & Provansal
(2001). The computations of Johnson & Patel (1999) accounting for a finite deviation
from axisymmetric flow confirm the steadiness of a non-axisymmetric regime below
Re � 270, where they find a transition to organized periodic vortex shedding, a result
also found by Tomboulides & Orszag (2000). It is interesting to note that the results of
Johnson & Patel (1999) clearly show the presence of a strong toroidal vortex structure
behind the sphere even beyond transition to the unsteady regime after the second
bifurcation. Computations by Lee (2000) and Lee & Wilczak (2000) also suggest
that a non-axially-symmetric vortex structure persists up to a Re in the range 350
to 400, while the flow becomes unsteady for Re > 400. On the basis of experimental
evidence, Taneda (1978) states that a similar structure, possibly oscillating, persists
until Re� 400. He reports a major transition for Re between 400 and 1000 where
the more-or-less persistent vortex structure behind the sphere is replaced by unsteady
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Figure 24. (a–c) For caption see facing page.

horseshoe-shaped vortex loops. According to Tomboulides & Orszag (2000), a chaotic
regime sets in for Re � 500. The details of some of these conclusions must be modified
in the case of free spheres (Jenny et al. 2003, 2004), but the general picture of a first
regular bifurcation, followed by a Hopf one, a markedly unsteady and eventually a
chaotic regime remains essentially unchanged.
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(d ) Solid-body
rotation

(e) Straining flow
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Figure 24. Illustration of the proposed mechanism underlying the effects described in this
work. The left-hand column shows the components of the flow in which the sphere is
immersed. The middle column is a sketch of the displacement of the toroidal vortex and
the low-shear-stress region behind the sphere due to the shear components of the flow. The
right column shows the calculated velocity field in the symmetry plane of the sphere in the
corresponding flow, all for Re =20. (a) Uniform flow, α = 0, β = 0; (b) linear shear flow,
α = 0, β = 1; (c) cross-stream shear flow, α = 1, β = 0; (d) solid-body rotation, α = 1, β = 1;
(e) pure strain, α = 1, β = −1.

There does not appear to be any information on how these features are modified
in a rotating flow, but for a linear shear flow the results of Lee & Wilczak (2000)
show that the same features exist, although the onset threshold is lowered. It may
be reasonable to expect that, in our case, the features of a uniform flow qualitatively
survive, with different onset thresholds. Therefore, the difference between the steady
position of the particle centre observed in the glycerine–water mixture and the small
precessing motion found in pure water (see § 3) may be caused by what in a uniform
flow would be the loss of axial symmetry and onset of unsteadiness. Similarly, the
steep fall of the rotational velocity when the Reynolds number exceeds a value of
∼650 (to the left of the sharp peak in figure 3) might be due to the collapse and
disappearance of the vortex structure which, as argued before, may very well be the
‘engine’ on which the fast spin relies.
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10. Summary
Whereas inertial effects cause a particle to spin more slowly than the fluid in a

streamwise shear, we have found that, in the presence of a significant cross-stream
shear component of the flow, the particle spins faster than the fluid due to a strong
deflection of the wake. Unexpectedly, in the parameter range we have investigated,
we found that the spin rates produced by the streamwise and cross-stream shear can
be added to give a very close approximation to the spin rate calculated when both
shear components are present simultaneously.

Combining the two types of shear into a solid-body rotation gives a result in which
the spin rate is larger than that of the ambient fluid. The fact that, in a solid-body
rotation, the particle spins faster than the fluid has been confirmed by experiment
and simulation. The difference between the influence of the two shear types yields the
particle spin rate in a strain flow combined with a uniform flow.

A study of the shear stress on the particle surface suggests the location of the
separation lines. In view of the complexity of three-dimensional separation on a
moving wall, we have not attempted to determine precisely the position on these lines.
We have simply identified the region of low shear stress behind the particle. When a
cross-stream shear is present this region moves counterclockwise with respect to the
uniform flow. For a rotating particle, the low-shear region to some extent moves back
clockwise.

A tentative explanation for the phenomenon is based on the different modifications
of the vortex structure behind the sphere caused by the different flows. The cross-
stream shear causes a sideways displacement of the vortex structure and a shift in
the low-shear region. Since the strength of this vortex increases with Re, so does
the effect. This trend abruptly breaks down at Re ∼ 650, where the particle spin rate
starts to decrease until ultimately falling below that of the fluid. We have suggested
that this qualitative change may be due to the destabilization and disappearance of
the vortex structure behind the sphere.

The particle spin has a clear effect on the lift coefficient in the intermediate-
Reynolds-range. We have computed that, in a solid body rotation at Re = 20 and
50, the lift coefficient is 47 % and 34 %, respectively, larger for a rotating than for a
non-rotating sphere.

We would like to thank Professor S. Balachandar and Professor P. Bagchi for their
discussions by correspondence and G. W. H. Bruggert and M. Bos for building the
experimental setup. This work is part of the research programs of STW and FOM,
which is financially supported by NWO.
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